“The biggest [drawback] is that they are probabilistic prediction machines, and will get it wrong in ways that aren’t just ‘that’s the wrong word’,” Willis explains. “LLMs will sometimes skip a line in larger documents where the layout repeats itself, I’ve found, where OCR isn’t likely to do that.”
AI researcher and data journalist Simon Willison identified several critical concerns of using LLMs for OCR in a conversation with Ars Technica. “I still think the biggest challenge is the risk of accidental instruction following,” he says, always wary of prompt injections (in this case accidental) that might feed nefarious or contradictory instructions to a LLM.
“That and the fact that table interpretation mistakes can be catastrophic,” Willison adds. “In the past I’ve had lots of cases where a vision LLM has matched up the wrong line of data with the wrong heading, which results in absolute junk that looks correct. Also that thing where sometimes if text is illegible a model might just invent the text.”
These issues become particularly troublesome when processing financial statements, legal documents, or medical records, where a mistake might put someone’s life in danger. The reliability problems mean these tools often require careful human oversight, limiting their value for fully automated data extraction.
The path forward
Even in our seemingly-advanced age of AI, there is still no perfect OCR solution. The race to unlock data from PDFs continues, with companies like Google now offering context-aware generative AI products. Some of the motivation for unlocking PDFs among AI companies, as Willis observes, doubtless involves potential training data acquisition: “I think Mistral’s announcement is pretty clear evidence that documents—not just PDFs—are a big part of their strategy, exactly because it will likely provide additional training data.”
Whether it benefits AI companies with training data or historians analyzing a historical census, as these technologies improve, they may unlock repositories of knowledge currently trapped in digital formats designed primarily for human consumption. That could lead to a new golden age of data analysis—or a field day for hard-to-spot mistakes, depending on the technology used and how blindly we trust it.